
RADC-TR-87-219
t , Final Technical Report

September 1988

ah)

(0

RESEARCH ON SIGNAL PROCESSING
SSUPERCOMPUTERS

Carnegie Mellon University

H. T. Kung

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

.F F--.C'IC D
A PR 1. 8 1989

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Service (NTIS). At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-87-219 has been reviewed and is approved for publication.

APPROVED: / _,(/ /. :

RIC ARD N. SMITH
Project Engineer

APPROVED: / J
BRUNO BEEK
Technical Director
Directorate of Communications

FOR THE COMIANDER:/

JAMES W. HYDE III
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (DCCD) Griffiss AFB NY 13441-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific doucment require that it be returned.

UTNCIT TKE

SECURITY CLASSIFICATION OF THIS PAGE
i Form Approved

REPORT DOCUMENTATION PAGE OMBNo. 0704-018o 8

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASS I FI ED N/A
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT
NA Approved for public release;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A RADC-TR-87-219

64. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION(if aplpikabe)

Carnegie Mellon University Rome Air Development Center (DCCD3

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Department of Computer Science
Pittsburgh PA 15213 Griffiss AFB NY 13441-57a0

Sa. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Rome Air Development Center DCCD F30602-81-C-0206
S8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO. NO. NO ACCESSION NO

61102F 2-305 38 P
11. TITLE (Include Security Clasfication)

RESEARCH ON SIGNAL PROCESSING StPERCOMPUTERS

12. PERSONAL AUTHOR(S)

H. T. Kune
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year,Aionth Oay) 1S. PAGE COUNT

Final FROM Q40 8 TO q 6 Setember 1988 52
16. SUPPLEMENTARY NOTATION

NIA

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUR-GROUP Computing
25 02 signal processing
17 04 01 systolic narallel

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Signal processing is an area where the required computational bandwidth in an applicarton can
be unbounded. Applications such as radar, sonar and communications already call for .ignal
processing systems capable of delivering billions or tens of billions of operations per
second. In developing a new signal processor to meet these requirements, it is essential to
understand the underlying computational models. An ad-hoc processor development effort that
is unclear on the computational models will likely be wasteful and unable to meet the long-
term performance goal. Fortunately, because the control in signal processing is typically
data-independent, computational models in this area can be relatively simple. Based on the
study performed under this contract, this report describes some important computational model
for parallel signal processing, and illustrates how the Warp machine developed by Carnegie
Mellon supports these models. -- he viewpoint expressed in this report may provide some useful
insights into the development of the next-generation signal processing supercomputers.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[] UNCLASSIFIED/UNLIMITED 03 SAME AS RPT Q DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c, OFFICE SYMBOL
Richard N. Smith (315) 330-3224 IRADC (DCCD)

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

AccesIon For

NTTS GPA&I

DTIC TAB
U a r ouzced []

By

D istribution / L__TAG

Availability Codes

'Avfiij and/or

D ist Special

1. Background

There are serious problems with current processors for high-speed signal processing. To meet speed

requirements in real-time applications, many companies, including AT&T, GE, Honeywell, Hughes,

IBM, TRW, TI, and Westinghouse, have developed their own versions of programmable signal proces-

sors. The development of these processors has been enormously expensive, and yet they are far from

ideal. These processors are typically programmed in assembly languages, and as a result, it is extremely

difficult to develop and maintain software for them. Moreover, these machines rely heavily on custom

CPUs and special-purpose hardware to obtain their performance. It is not clear at all how these systems

can be scaled up to provide another order of magnitude improvement in performance without incurring a

huge cost.

For a contrast, consider the community of scientific computing, which also deals with computationally

demanding applications. That community enjoys access to general purpose supercomputers built by

companies such as CDC, CRAY and NEC, and even smaller companies such as Convex. It has not been

as necessary for researchers in scientific computing to build their own high-performance computers, as it

has been for professionals in high-speed signal processing. One can easily see that computing needs for

scientific computing have been more cost-effectively met than those for high-speed signal processing.

There could be many reasons for this phenomenon. High-speed signal processing machines are often

embedded in larger systems, so in this case special designs are needed to deal with various interfaces to

the external world. It may be also due to the fact that applications usually impose stringent power and

size limitations on signal processors. However, we believe that there are other, subtle reasons. Consider

for example the impact of programming languages being used in these two communities. The scientific

community uses FORTRAN throughout. They know very well that all they need is machines that can

1

execute FORTRAN code efficiently and have an effective vectorizer compiler. This goal is clearly stated,

and (despite FORTRAN being an old programming language) concentrated efforts in machine architec-

tures and their implementations have been possible. The high-speed signal processing community on the

other hand has mostly been programming in assembly or lower level languages; programming ex-

periences are highly machine-dependent. Therefore, the requirements of supercomputers for signal

processing have not been clear.

To solve these problems, a fundamental way is to understand the computational models that high-

performance signal processors need to support. This is elaborated in the following section.

2. The Importance of Computational Models

When developing a new computer system, some models about the computations that the machine will

support efficiently are always in the designer's mind. For example, a typical signal processor is op-

timized to execute data-independent inner loops for routines such as FFT, filtering and matrix multiplica-

tion. Computational models are more fundamental than architectures, because the former define the

usage patterns of the machines from which the latter are derived. Unfortunately, these models are often

not explicitly stated, because sometimes it is difficult to describe them precisely.

The importance of computational models increases for new signal processing machines that use paral-

lelism as a mechanism for achieving additional performance. High performance execution on parallel

architecture is achieved by having the programmer or compiler organize the computation so that many

tasks can be performed concurrently. The computational models are needed to give guidance on how the

partitioning can be done, and how the communication cost between the processors can be minimized.

Without the computational models, it would be very difficult to manage the kind of complexity due to the

parallelism.

More importantly, computational models provide necessary insights about the design of high-level

programming languages to support parallel computations. The most difficult part of the design of such a

language is on the inter-processor communication, and this can be done properly only if the computa-

tional models have been clearly defined. Similarly the models give the hardware requirement to support

efficient inter-processor communication.

Rather than proposing new architectures and discussing their computational bandwidths, in the follow-

ing we give computational models for future high-performance signal processors. These models are

based on our experience in projects such as Warp and MWarp, in design of parallel algorithms such as

systolic algorithms, and in signal and image processing applications such as the autonomous land vehicle

2

(ALV) navigation.

We give computational models only for parallel computers using partitioned, rather than, shared

memory. These computers are capable of delivering very high computational throughput because all of

their processors can work simultaneously on their own local memories. Almost all of the very high-

performance, parallel signal processors available today, including Warp, are machines of this kind. This,

we expect, will remain to be true in the foreseeable future.

It is well-known, however, that partitioned memory parallel computers are more difficult to program

than shared memory ones, because users will have to manage explicitly various memories present in the

system. As stated above, computational models identified in this report will help specify hardware and

software tools needed to aid the programming.

3. Some Experience at Carnegie Mellon University

High-speed signal architectures have been a focus of research at Carnegie Mellon for many years. Two of

our most recent efforts in this area are the Warp and [Warp projects.

The Warp machine is a systolic array computer of linearly connected cells, each of which is a

programmable processor capable of performing 10 million floating-point operations per second (10

MFLOPS). A typical Warp array includes 10 cells, thus having a peak computation rate of 100

MFLOPS. The Warp array can be extended to include more cells to accommodate applications capable

of using the increased computational bandwidth. Warp is integrated as an attached processor into a UNIX

host system. Programs for Warp are written in a high-level language supported by an optimizing com-

piler.

The Warp system is depicted in Figure 1. The Warp array performs the computation-intensive routines

such as image processing routines or matrix operations. The interface unit handles the input/output

between the array and the host, and can generate addresses (Adr) and control signals for the Warp array.

The host supplies data to and receives results from the array. In addition, it executes those parts of the

application programs which are not mapped onto the Warp array. For example, the host may perform

decision-making processes in robot navigation or evaluate convergence criteria in iterative methods for

solving systems of linear equations.

The Warp array is a linear systolic array of identical cells called Warp cells, as shown in Figure 1. Data

flow through the array on two communication channels (X and Y). Those addresses for cells' local

memories and control signals that are generated by the interface unit propagate down the Adr channel.

3

WARP PROCESSOR ARRAY

Figure 1. Warp system overview

The direction of the Y channel is statically configurable. This feature is used, for example, in algorithms

that require accumulated results in the last cell to be sent back to the other cells (e.g., in back-solvers), or

require local exchange of data between adjacent cells (e.g., in some implementations of numerical relaxa-

tion methods).

Figur . Wapcl. aapt

S512 x 32

" 512 x 32

Data

Mem ! Cross]r-_m

32K x 32 Ba 2Kx3

Address
SCross

Figure 2. Warp cell data path

The first 10-cell prototype was completed in February 1986; delivery of production machines by our

industrial partner (GE) started in April 1987. Extensive experimentation with both the prototype and

4

production machines has demonstrated that the Warp architecture is effective in the application domain of

robot navigation, as well as in other fields such as signal processing, scientific computation, and computer

vision research [2, 1, 3, 5, 6, 141. For these applications, Warp is typically several hundred times faster

than a VAX 11/780 class computer.

Presently mounted inside of a robot vehicle called NAVLAB, Warp has been used in vehicle control to

perform road following and obstacle avoidance. We have implemented road following using color clas-

sification, obstacle avoidance using stereo vision, obstacle avoidance using a laser range-finder, and path

planning using dynamic programming. We have also implemented a significant portion (approximately

100 programs) of an image processing library on Warp [15], to surport robot navigation and vision

research in general.

Anticipating the future need for integrated Warp systems, we have been developing a chip with Intel

Corporation, called the iWarp chip, since April 1986. When it becomes operational in 1989-90, the

resulting iWarp system is expected to represent an order of magnitude improvement in cost and perfor-

mance over the current Warp. Using tens of cells, the [Warp system will be able to deliver over a billion

floating-point operations per second.

4. Some Background on Systolic Arrays

The Warp architecture evolves from many years' research in systolic arrays at Carnegie Mellon and

elsewhere. It is therefore important to review the basic concept of systolic arrays.

4.1. Principle of Systolic Arrays

Systolic arrays are suited for "front-end processing" that deals with large amounts of data obtained

directly from sensors. Although processing of this kind usually requires much computing power, it is

highly regular and parallelizable. The systolic array architecture exploits this regularity and parallelism to

meet the computation requirement with low costs.

The principle of a systolic array architecture (Figure 3) is that by replacing a single processing element

(PE) with an array of processing elements, called cells, a higher computation throughput can be achieved

without increasing the input/output bandwidth with the outside world [111. The function of the memory

is analogous to that of the heart; it "pulses" data through the array of cells. The crux of this approach is

to ensure that once a data item is brought out from the memory it can be used effectively at each cell it

passes while being "pumped" from cell to cell along the array. Being able to use each input data item a

number of times is just one of the many advantages of a systolic array. Other advantages include modular

expandability, simple and regular data and control flows, use of simple and uniform cells, efficient fault-

tolerant schemes, and elimination of global data communication. These properties are highly desirable

5

Conventional I O I

Systolic

PEPEPEPE P

Figure 3. Processor architecture: conventional processor with one

processing element (PE), and systolic array processor with an array of PEs or cells

for VLSI> (Very Large Scale Integration) implementations. Indeed the advances in VLSI technology

have been a major motivation for recent interest in systolic arrays.

Systolic arrays typically call for simple and regular array interconnections between their processing

elements. Many systolic algorithms have been developed on arrays depicted in Figure 4. A bibliography

maintained at Carnegie Mellon lists more than 350 papers published in the past eight years on systolic

arrays.

Figure 4. Typical interconnection schemes for systolic arrays

4.2. Properties of a Systolic Array Machine

We summarize some of the typical properties of a systolic array machine.

SI. The systolic array is attached to a host, which represents the "outside world" that supplies
data and receives results to and from the array, respectively. The host may also control the
array. This differs from a traditional "cellular automaton," which is assumed to be self-
sufficient for the entire computation.

S2. The machine achieves its efficiency by a careful mapping of computation onto the systolic
array.

6

(a) The mapping requires only simple and regular inter-cell communication for the ar-
ray.

(b) Only boundary cells communicate with the outside world so the array's external I/O
bandwidth is minimized.

This is unlike data flow computers where the mapping is done dynamically in an unpre-
dictable manner.

S3. Cells of the systolic array are optimized for inter-cell communication, so data can efficiently
flow through the array as they are being processed.

(a) Each cell has sufficient I/O bandwidth for efficient implementation of very
fine-grain parallelism (e.g., only one or two arithmetic operations performed for
each I/O operation).

(b) Systolic communication: each cell can operate directly on data residing at the cell's
input queues and move computed results directly to the cell's output queue. There-
fore it may not be necessary to store incoming or outgoing data in the cell's local
memory.

This differs from a typical message passing, distributed memory parallel computer such as a
hypercube.

4.3. Why the Warp Project?

A systolic array can implement a special-purpose processor, or a programmable processor. For special-

purpose implementation, the systolic array is justifiable by a predetermined set of application tasks.

Clever systolic algorithm design and highly optimized implementation, possibly with custom-made I/O

devices, for the tasks are the name of the game. Tools for fast turnaround implementation are sometimes

important.

When implementing a programmable systolic array processor considerations span more dimen-

sionahies, and issues are in general more complex. One must develop programming models and support,

handle the I/0 with a general purpose host computer, and compete with many other programmable paral-

lel computers. It is not simple to strike a balance between competing design goals such as high perfor-

mance, low cost, and high degree of programmability; only extensive experiments will provide the neces-

sary insights.

The objective of the Warp project is to explore the design space of high-performance and yet highly

programmable systolic array machines, and prove that the resulting architecture will be cost-effective

when compared to other parallel architectures. Programmability here does not mean merely that the

hardware is flexible so that it can be reconfigured to perform a variety of tasks. We need to show that

efficient and effective programming tools can be developed on the system, and with these tools lots of

algorithms and applications can be implemented at relatively low cost.

7

5. Computational Models Supported by Warp

The current Warp systera supports the following computational models for linear, or I-dimensional (ID),

processor arrays:

1. pipelining;

2. data partitioning;

3. recursive computation;

4. domain decomposition;

5. divide-and-conquer

6. multi-function pipelining.

In the following we briefly describe these models. In the discussion cells in the ID processor array are

named as cell 1. cell 2, , ,cell N from left to right.

5.1. Pipelining

In this model, typical of systolic processing, the algorithm is partitioned among many Warp cells, where

each cell does one stage of the processing. More precisely the computation for each output is partitioned

into a sequence of identical stages, and cell i is responsible for stage i. A characteristic of this model is

that cell i+1 uses computed results of cell i, as depicted in Figure 5.

INTERMEbIATE RESULTS

:NPUTJ /k6-.....-..L OUTPUT

STAGE I STAGE 2 STAGE N

Figure 5. Pipelining model

Thus during the computation cell i+I cannot start its operation until cell i completes at least a stage of
computation. Intermediate results move from left to right, and final results emerge from the right-most
cell. The sequence of computation in computing each output is exactly the same as that for the sequential

one.

The Warp array's high inter-cell communication bandwidth and effectiveness in handling fine-grain

parallelism make it possible to use this model. For some algorithms, this is the only method of achieving

parallelism that is possible.

A simple example of the use of pipelining is the solution of elliptic partial differential equations using
successive over-relaxation (181. Consider the following equation:

a2u a2u
+ - f(x-y).

The system is solved by repeatedly combining the current values of u on a 2-dimensional grid using the

following recurrence:

l*jij = (1-Co) Uj' + A ' Ui'j - l +ui j +1+ui l +u 1
i- l'j where o is a constant parameter.~4

In the Warp implementation, each cell is responsible for one relaxation, as expressed by the above equa-

tion. In raster order, each cell receives inputs from the preceding cell, performs its relaxation step, and

outputs the results to the next cell. While a cell is performing the kth relaxation step on row i, the

preceding and next cells perform the k-1st and k+lst relaxation steps on rows i+2 and i-2, respectively.

Thus, in one pass of the u values through the 10-cell Warp array, the above recurrence is applied ten

times. This process is repeated, under control of the external host, until convergence is achieved.

The Warp implementation of FFT also uses this pipelining model [12, 141.

5.2. Data Partitioning

In this model, data are partitioned across the cells and each output is computed entirely within a cell.

That is, the entire computation for each output is done locally at a cell. The input required by the

computation of a cell is shifted in via the cells to the left. The output produced by a cell is shifted out via

the cells to the right. This computation model is depicted by Figure 6, in which dotted arrows denote the

shift-in and shift-out paths for input and output, respectively.

:NPUT -): : > . .: O) O T UOUTPUT

Figure 6. Data partitioning model

Various partitioning schemes can be used to assign computations to cells for the data partitioning com-

putation model. Most of the schemes are based on the partitioning of the input or output data set [141.

5.3. Recursive Computation

The abovc models involve data flowing in one direction, that is, from left to right. However, bi-

directional data flows are often used for computations where previously computed results are needed to

compute future results. By flowing results that were previously computed against the flow of inter-

mediate results that are currently being computed, recursive computations can be implemented. The

important feature of the recursive computation model is the presence of these bi-directional data flows

over the ID array, as illustrated by Figure 7. Examples of recursive computations that have been imple-

mented on ID arrays with bi-directional data flows include recursive filtering [10], solution of triangular

linear systems [131, and QR-decomposition [8].

9

INPUTI~ii~F OUTPUT

Figure 7. Recursive computation model

5.4. Domain Decomposition

The domain decomposition model arises when a problem domain (such as the grid space used in a finite

difference or finite element modelling) is decomposed so that each cell handles a subdomain. This model

is like the local computation model where each output is computed entirely by a single cell. However,

once in a while bi-directional exchanges of information between neighboring cells are needed. The

exchanges of information are relatively infrequent; they occur only after cells have done a fairly large

amount of computations locally. The information exchanged between two neighboring cells involves

intermediate results computed by both cells. Figure 8 depicts the domain decomposition model. In

contrast, for the recursive computation model of Figure 7. bi-direction exchanges of information are

relatively frequent, and each right-to-left arrow carries previously computed results by the array rather

than intermediate results computed by the sending cell.

Figure 8. Domain decomposition model

There are many computations that can be conveniently carried out using the domain decomposition

model. Numerical simulations of properties of a physical object, by either PDE or Monte Carlo, can be

partitioned along the physical space. A large file can be sorted on a ID array by using the bi-directional

communication to merge sublists sorted by individual cells. The merging can be done in a manner similar

to that used in the odd-even transposition sort, involving only nearest neighbor communications [4].

Labelling of connected components in an image can be done by using the bi-directional communication to

merge labels of subimages computed by individual cells [14].

5.5. Multi-function Pipelining

A single computation may involve a series of subcomputations each executing a different function. If the

different function stages can be chained together on the ID array, then a one-pass execution of the entire

computation would be possible. This is the basic idea of the multi-function pipelining model [6]. In this

model, the ID array is a pipeline of several groups, each consisting of a number of cells devoted to a

different function. The number of cells in each group can be adjusted so that every group will take about

the same time, in order to maximize the pipeline throughput.

10

Figure 9 illustrates the use of the multi-function pipelining model to implement the geometry system

portion of 3-D computer graphics. The first cell performs the matrix multiplications, the next three cells

do clipping, and the last cell does the scaling operation. Three cells are devoted to clipping as it requires

more arithmetic operations than either matrix multiplication or scaling [9].

U H OUTPUT

GROUP 1 GROUP 2 GWUP 3

(FOR MATRIX MULT) (FOR CLIPPING) (FOR SCALING)

Figure 9. Multi-function pipelining model to implement a geometry system

The data rate and format of the input to a group may not be compatible to those of the output from the

preceding group. In this case a buffering capability is needed at either end of a group.

Figure 10 depicts another example of multi-function pipeline. This is a laser radar simulation that we

have recently implemented on Warp:

Group 1: Perform 1024-point complex FFT using 10 cells, then partition the FFT output
sequence into 30 overlapped 256-element subsequences.

Group 2: For each of the 30 256-element subsequence, perform the following operations.

" Cell 1: Multiply each element by a complex number (weight).

" Cells 2-9: Perform 256-point complex inverse FFT.

" Cell 10: Compute the amplitude of each of the 256 outputs.

Group 3: Threshold the resulting 30x256 image using 3 x3 windows.

The figure shows that all the operations in the three groups are performed in one pass on a linear array.

1024-pt 30x256
Sample Image

Cel ell--- Cell Cell

1024-pt FFT [256-pt FFT Amplitude
& &

Multiplication Thresholding

Figure 10. Radar processing on Warp

In summary, the multi-function model differs from the pipelining model described earlier in that cells

are now allowed to perform different functions. This flexibility in the usage offers the opportunity of

11

effectively using a large number of cells in a ID array.

6. Computational Models for 2-D Arrays

This section considers 2-dimensional (2-D) processor arrays, as illustrated by Figure 11.

Figure 11. Examples of 2-D processor arrays

We have identified the following important computational models for 2-D arrays:

1. pipeline;

2. local computation;

3. recursive computation;

4. domain decomposition; and

5. divide-and-conquer.

These models are straightforward extensions of the corresponding ones for I-D arrays, and thus we will

discuss them only briefly.

It is possible to define query processing, multi-function pipeline and task queue models for 2-D arrays.

However, they do not seem to lead to more useful applications than their counterparts for I-D arrays.

6,1. Pipeline Model for 2-D Arrays

In the pipeline model, the 2-D array is a "wide" pipeline where each stage may consist of more than one

cell. During the computation, cells in one stage send intermediate results, that they have computed, to

their nearest neighboring cells in the next stage. Examples are 2-D systolic arrays for matrix multiplica-

tion [13, 17] and dynamic programming [7].

6.2. Local Computation Model for 2-D Arrays

The characteristic of the local computation model is that the computation for each output is computed

entirely within a cell. An example is the matrix multiplication scheme where terms in the product matrix

are accumulated locally at individual cells.

12

6.3. Recursive Computation Model for 2-D Arrays

In the recursive computation model, previously computed results are fed back into the array to interact

with other intermediate results. An example is the LU decomposition of banded matrices [13], where

previously computed results flow back to the array in two directions to meet intermediate results that flow

in yet another direction.

6.4. Domain Decomposition Model for 2-D Arrays

Physical problems can often be decomposed naturally over a 2-D processor array. Each cell performs

computations associated with the assigned region. When one stage of the local computation is completed,

the cell communicates with its nearest neighbors to update the values on the boundary of the region.

6.5. Divide-and-conquer Model for 2-D Arrays

Both the bitonic sort and merge sort are recursive sorting methods that can be implemented on a 2-D array

[161.

7. Computational Model for Heterogeneous Machines

Figure 12 indicates various tasks involved in an ALV road following application. Tasks such as road

predictor and finder are well-suited to special-purpose machines employing, say, ID or 2D processor

arrays. The computational models, described earlier in this report, are useful for devising computational

schemes for these individual tasks. However, to get the next level of performance we need to explore the

fact that many of the tasks such as landmark recognition and road finding can operate in parallel, possibly

on a variety of machines. In this section we discuss this task-level computational model for

heterogeneous machines.

Driven by application needs, heterogeneous parallel computers have become increasingly common, and

will represent an important trend for next-generation signal processing supercomputers. For example, the

DARPA ADRIES image analysis project uses a system that integrates a 16-node Butterfly and a Sym-

bolics 3670 for symbolic processing, as well as a Star 100 array processor, a Warp and a 128-node

Butterfly for numeric processing. These processors are configured around a high-bandwidth Aptec bus,

which also interfaces to a high-bandwidth disk system via a VAX 11/750.

Another example of a heterogeneous parallel computer is the current Warp machine itself. The system

has a general purpose workstation and standalone MC68020 processors, in addition to the Warp array.

Run-time software is provided to make these components work in parallel, and to handle various func-

tions of the machine. Moreover, Warp is an open system in the sense that special interfaces can be added

to the machine in the future to fulfill individual application needs. In fact, the design of interfaces to the

Butterfly machine, the Aptec bus and a high-speed digitizer has already started.

13

Map database Destination from

Map database

prdctrpredictor Vehicle

Obstaclle

Figure 12. A task-level program for the ALV mad-following

For these systems, local area networks such as Ethernet can provide the flexibility but not the required

speed. To meet the speed requirement special hardware and software means are often used. However,

the integration structures such as those used in the current Warp system or in the ADRIES system are

ad-hoc. They do not support a unified programming environment and cannot be expanded or modified
easily.

A high-performance common framework for integration purposes is crucial for open system architec-

tures as well as for exploiting task level parallelism. The framework should support efficient use of the

individual processors, and allow the user to schedule them easily.

Figure 13 depicts the configuration of a heterogeneous system. The system consists of one or more

Warp arrays, several general purpose processors, sensors, and an tWarp array when it becomes available.

In programming the heterogeneous machine, we can use existing programming methods to program the

individual processors. but we need new computational models to make the heterogeneous processors in
the system work together in parallel at the task level. In the following we describe a task-level model for

exploiting the task level parallelism.

14

0

-,.4

Warp Array

Workstation

VLSI Warp Array

Sensors
(Vision, Sonar, Radar)

General-purpose

Output devices Processor

Figure 13. Configuration of a heterogeneous machine

An application program is viewed as a collection of coarse-grain, asynchronous, cooperating tasks, as

depicted by Figure 14.

From camera

Taskl at host

Task3 Task4
at Warp array at Warp array

TaskG TaskO
at Warp array at Warp array

Task2 at host

To display

Figure 14. Program illustration using the task-level model

A task usually depends on other tasks to provide its input data, and produces output for consumption by

yet other tasks. Input and output data queues can be used between tasks to smooth the data flow. Each

15

task executes on a single special- or general-purpose processor, 'pecified by the programmer. In general,

a number of tasks within a program may execute concurrently on different processors, subject to data-

dependency constraints.

The programmer can specify an input condition to trigger the execution of a task as soon as the con-

dition is satisfied. A condition may be the minimum amount of data needed in an input queue, or the

existence of certain kind of data in the queue. For instance, a landmark recognition task can start as soon

as some distinguished sign appears in the image.

The programmer explicitly associates each task with a set of processors, any of which is capable of its

execution. It will be up to a run-time scheduler to determine the particular processor on which the

execution of the task is to be scheduled.

8. Conclusions

Computational models for l-D and 2-D processor arrays are useful for front-end processing that deals

with data directly from the sensors. The task-level model is suited to back-end processing that deals with

reasoning. The ultimate signal processing supercomputer should be able to utilize the task-level paral-

lelism provided by the task-level model, and the fine-grain parallelism provided by the computational

models for 1-D and 2-D arrays.

16

References

1. Annaratone, M., Bitz, F., Clune, E., Kung, H. T., Maulik, P., Ribas, H., Tseng, P. and Webb, J.
Applications and Algorithm Partitioning on Warp. COMPCON Spring '87, IEEE Computer Society,
1987, pp. 272-275.

2. Annaratone, M., Amould, E., Kung, H.T. and Menzilcioglu, 0. Using Warp as a Supercomputer in
Signal Processing. Proceedings of ICASSP 86, IEEE, 1986, pp. 2895-2898.

3. Annaratone, M., Bitz, F., Deutch, J., Hamey, L., Kung, H. T., Maulik, P., Ribas, H., Tseng, P. and
Webb, J. Applications Experience on Warp. Proceedings of the 1987 National Computer Conference,
AFIPS, 1987, pp. 149-158.

4. Baudet, G. and Stevenson, D. "Optimal Sorting Algorithms for Parallel Computers". IEEE Trans-
actions on Computers C-27, 1 (January 1978), 84-87.

5. Clune, E., Crisman, J. D., Klinker, G. J., and Webb, J. A. Implementation and Performance of a
Complex Vision System on a Systolic Array Machine. Tech. Rept. CMU-RI-TR-87-16, Robotics In-
stitute, Carnegie Mellon University, 1987.

6. Gross, T., Kung, H.T., Lam, M. and Webb, J. Warp as a Machine for Low-level Vision. Proceedings
of 1985 IEEE International Conference on Robotics and Automation, March, 1985, pp. 790-800.

7. Guibas, L.J., Kung, H.T. and Thompson, C.D. Direct VLSI Implementation of Combinatorial Al-
gorithms. Proceedings of Conference on Very Large Scale Integration: Architecture, Design, Fabrication,
California Institute of Technology, Jan., 1979, pp. 509-525.

8. Heller, D.E. and Ipsen, I.C.F. Systolic Networks for Orthogonal Equivalence Transformations and
Their Applications. Proceedings of Conference on Advanced Research in VLSI, Massachusetts Institute
of Technology, Cambridge, Massachusetts, January, 1982, pp. 113-122.

9. Hsu, F.H., Kung, H.T., Nishizawa, T. and Sussman, A. Architecture of the Link and Interconnection
Chip. Proceedings of 1985 Chapel Hill Conference on VLSI, Computer Science Department, The
University of North Carolina, May, 1985, pp. 186-195.

10. Kung, H.T. Let's Design Algorithms for VLSI Systems. Proceedings of Conference on Very Large
Scale Integration: Architecture, Design, Fabrication, California Institute of Technology, January, 1979,
pp. 65-90. Also available as a CMU Computer Science Department technical report, September 1979..

11. Kung, H.T. "Why Systolic Architectures?". Computer Magazine 15, 1 (Jan. 1982), 37-46.

12. Kung, H.T. Systolic Algorithms for the CMU Warp Processor. Proceedings of the Seventh Inter-
national Conference on Pattern Recognition, International Association for Pattern Recognition, 1984, pp.
570-577.

13. Kung, H.T. and Leiserson, C.E. Systolic Arrays (for VLSI). Sparse Matrix Proceedings 1978,
Society for Industrial and Applied Mathematics, 1979, pp. 256-282.

14. Kung, H. T. and Webb, J. A. "Mapping Image Processing Operations onto a Linear Systolic
Machine". Distributed Computing 1, 4 (1986), 246-257.

15. Electrotechnical Laboratory. SPIDER (Subroutine Package for Image Data Enhancement and
Recognition). Joint System Development Corp., Tokyo, Japan, 1983.
16. Thompson, C.D. and Kung, H.T. "Sorting on a Mesh-Connected Parallel Computer".

Communications of the ACM 20, 4 (April 1977), 263-271.

17. Weiser, U. and Davis, A. A Wavefront Notation Tool for VLSI Array Design. VLSI Systems and
Computations, Computer Science Department, Carnegie-Mellon University, Octoher. 1981, pp. 226-234.

17

M8 Young, D.. Iterative Solution of Large Linear Systems. Academic Press, New York, 1971.

Appendix:
Computational Models for Future

Signal Processing
Supercomputers

(1986 IEEE Military
Communications Conference,

October 1986)

A-i

AIBS'IRCI'

FutUre supcrcomputers tbr signal processing will exploit parallelism a% ailable at all levels

of an application. To manage the complexity due to de parallelism, computational models

that define the usaoes of lhe machines must first be detincd. This paper gives computatonal

models for fine-grain parallism tpically available in front-end processing that deals with

data directly from sensors. The paper also describes a task-level model to capture the

coarse-grain parallelism typically available in the back-end processing that does reasoning on

the data obtained by the front-end processing. l'hese models reflect the experience Carnegie

Mellon University has accumulated over the past several years in the development of high-

performance parallel computers for signal and image processing, and their applications.

A-iii

1. INIROI)L'I ION

I 1'_'l-speed ,,ia1,1 Inodiniage rocC'sii1Q architcCLurCs ha~e becIn , ii,.ti f rI,,i',ch at Car-

Mkic: lclon L oixcrslt. rtr many 'ears. I PA 0i.Lr most reCint ctiorts II this area arc the
Warp and iWarp projects.

Warp is a programmable systolic array machine designed by Carnegie Mellon (2]. The

machine has an array ol 10 or more linearly connected cells, each capable of performing 10

million 32-bit floating-point operations per second (10 NI:I.OPS), A 10-cell array can

achieve a performance of 50 to 100 MFLOPS for a large variCty of signal and image process-

ing operations.

Two wire-wrap prototypes, built by Carnegie Mellon and its industrial partners-GE and

Honeywell, have been operational since spring 1986. lhese machines arc being used inten-

sively for signal and vision processing and for scientific computing. For these computations,

the new machines are typically ten to one hundred times faster than the conventional

machines we have at Carnegic Mellon. GE is under contract to build eight printed circuit

board versions of the machine to support research in robot navigation and image analysis

where computational demands can be extremely high.

Anticipating the future need for integrated Warp systems, Carnegie Mellon and Intel

have been developing a VLSI Warp chip, called the iWarp chip. since April 1986. [his

project is supported in part by DARPA. The resulting iWarp system is expected to represent

an order of magnitude improvement in cost-performance, over the current Warp. Using tens

of cells the iWarp system will be able to deliver over a billion floating-point operations per

second.

In this paper we consider future signal -processing supercomputers that are even more

powerful than the current high-performance machines such as Warp. Rather than proposing

new architectures and discussing their computational bandwidths, we give computational

models for these supercomputers. These models are based on our experience in projects

such as Warp and iWarp. in design of parallel algorithms such as systolic algorithms, and in

signal and image processing applications such as the autonomous land vehicle (ALV) naviga-

tion. Note that computational models arc more fundamental than architectures, because the

former define the usage patterns of the machines from which the latter are derived.

We give computational models only for parallel computers using partitioned. rather than,

shared memory. These computers are capable of delivering very high computational

throughput because all of their processors can work simultaneously on their own local

memories. Almost all of the very high-performance, parallel signal processors available

A-1

todai including WArp. arc nuichincs of' di is kind. hils. we expctE. w ill remain to he true in

the 16rcsccahle future.

It is ke it-k nown. ho%%e\ er. that paroti oned mneinory par1allel coputers are more difficult
to prooram than shared mcmorv ones. because users will have to manag ecxplicitly various

memories present in thc system. Computational models identified in this paper will hielp

specif% hardware and softwarc tools needed to aid the programming.

We hav.e identified eight major computational models for l-dimcnsional (1-D) processor
arrays. These are presentcd in Section 4. A brief discussion on the extension of these models

to 2-1) processor arrays is given in Section 5. Section 6 describes a task-level model for
heterogeneous machines. This model can exploit the hiigher-level parallelism available be-
tween the %arious tasks of an application. Sections 2 and 3 pro'.ide some background
information on the Warp and iWarp systems.

A-2

2O\VR\I0AV' OF \W.\R

1I1c Warp machilne ha' drce cim poncis-the Warp procassu(r array. or simply Warp array,

the iatert"Icc unit. and the host. as depicted in Figure 1. We dcsc'1hC this machine only

briefly here: inore detail is aaiIlable separately [2]. The Warp processor array performs the

bulk of the computation. [he interface unit handles the input/output between the array and

the host. The host has two functions: carrying out high-level application routines and

supplying data to the Warp processor array.

HOST

I I
Adr

INTERFACE

UNIT

CEL I I

L WARP PROCESSOR ARRAY - -

Figure 1. Warp machine overview

The Warp processor array is a pregrammable. linear systolic array, in which all processing

elements (Warp cells) are identcal. Data flow through the array on two data paths (X and

Y), while addresses and systolic control signals travel on the Adr path (as shown in the

Figure). The data path of a Warp cell is depicted in Figure 2. Each cell contains two

floating-point processors: one multiplier and one ALU [231. These arc highly pipelined:

they each can deliver up to 5 MFLOPS. This performance translates to a peak processing

rate of 10 MFLOPS per cell or 100 MFLOPS for a 10-cell processor array. To ensure that

data can be supplied at the rate they are consumed, an operand register file is dedicated to
each of the arithmetic units, and a crossbar is used to support high intra-cell bandwidth.

Each input path has a queue to buffer input data. A 32K-word memory is provided for
resident and temporary data storage.

A feature that distinguishes the Warp cell from many other processors of similar com-

putation power is its high I/O baidwidth-an important characteristic for systolic arrays.

Each Warp cell can transfer up to 20 million words (80 Mbytes) to and from its neighboring

cells per second. (In addition, 10 million 16-bit addreses can flow from one cell to the next

A-3

V?4ex t

Y C'urr

10 rev

XCurr

XP rev
Literal from Microcode

A d rP re v Q u e

Figure 2. Warp cell data path

cell every second.) 'li'is high inter-cell communication bandwidth makes it possible to
trans.er large 'olumCs of intermediate data between neighboring cells in a short time and
thus supports fine grain problem decomposition.

As address patterns are typically data-independent and common to all the cells, full
address generation capability is factored out from the cell architecture and provided in the
interface unit. Addresses are generated by the interface unit and propagated from cell to cell

(together with the control signals). However, for the printed circuit board versions of the
Warp machine currently being built, each cell will also have its own address generation unit.

In addition to generating addresses, the interface unit passes data and results between the
host and the Warp array, possibly performing some data conversion in the process.

While achievin2 a high computational throughput. Warp has a high degree of program-

mability. Each processor is a horizontal microengine: the user has complete control over the
various functional units. To help manage this fine-grain parallelism, an optimizing compiler

to support a high-level programming language has been developed [6]. To the application
programmer. Warp is an array of simple sequential processors, communicating
asynchronously. Based on the user's program for this abstract array. the compiler generates

code for the host, interface unit and Warp array automatically.

A-4

3. 0\I"R\ II'\ 01: I\ARP

.irn ciic cIlo n .1d In te t rc ic n .d c l chpin -a V I S I ch ip . c illed le i \\ff p ch ip. to

1i lp cIllem1i r , nc'ratcd c .ion of thie \Varp cell. [lhe iW arp chip is a program m able

processor cipable o' dctlienn at least 16 IMFI OPS.

This chip together with, say, a 6,4K-word local memory can form a powerful building-

block cell. called iWarp cell, for a variety of processor arrays beyond the currcnt Warp

machine. This is illustrated in Figure 3.

Net

XPrev XCur" ~riWarp
Cell

YPrev' YCurr

L -- - - - - ----

(a) (b)

(C) (d)

Figure 3. Processor arrays composed of iWarp cells:
(a) using the YNext input bus to receive broadcast data: (b) using the YNext

input bus and delay' elements, denoted by D's. to implement a new systolic pathway,
(c) using the iWarp cell to implement 2-D rectangular processor arrays: and (d) using
the iWarp cell augmented by a delay element to implement hexagonal processor arrays

The iWarp cell is expected to be at least 1.6 times faster than the Warp cell, and will have

A-5

about a 2" x 4" lootprint comparcd to the WVarp ccdi whose current irnplcriltaton occuIpies

.in entire 15" x 17 \ ir-wra,.p boa),rd. In UddLhion. die Mal-p Cell Will be able to cxccuIe

application prograim Orqpnallk ~.rittn toLr die WVarp ccll.

A-6

4. CONIIII'TAIlON.I, MOi)ILS FOR I-I).ARRAYS

We have identified eight iimportant comptLtational models for I-dimensional (1-I)) processor

arrays:

1. pipeline;

2. local computation;

3. recursive computation;

4. domain decomposition:

5. divide-and-conquer,

6. query processing;

7. multi-function pipeline: and

8. task queue.

The current Warp system supports the first four models, whereas the future iWarp system
will support all the models. In the following we describe these models, and illustrate them

by examples.

In the discussion cells in the I-D processor array are named as cell 1, cell 2, • • •, cell N

from left to right.

4.1. Pipeline Model for I-D Arrays

This is the classic systolic array model, where each output is computed across all the cells in a
pipelincd fashion. More precisely the computation for each output is partitioned into a

sequence of identical stages, and cell i is responsible for stage i. A characteristic of this
model is that cell i+ 1 uses computed results of cell i, as depicted in Figure 4.

INTERMEDIATE RESULTS

IPT--- - - _> OUTPUT

STAGE I STAGE 2 STAGE M

Figure 4. Pipeline model

Thus during the computation cell i+ 1 cannot start its operation until cell i completes at least

a stage of computation. Intermediate results move from left to right, and final results emerge

A- 7

from the right-most cell. The sequence of computation in cOMptIutg each output is exactly

the same as that tir the sequential one.

4.1.1. FFTr Example

Warp implernents the -F-" using this pipeline model [131. A n-pOint H-17, with n being a

power of 2, involves log2 n stages of n/2 butterfly operations. and data shufflings between

any two consecutive stages. The so-called constant geometry version of the FFT' algorithm

allows the same data shuffling to be used for all the stages [181. This is depicted in Figure 5

with n= 16. In the figure the butterfly operations are represented by circles, and number h

by an edge indicates that the result associated with the edge must be multiplied by w h

Figure 5. Constant geometry version of FF

In the Warp array, all the butterfly operations in the i-th stage are carried out by cell i,

and results are stored to the data memory of cell i+ 1. While the data memory of cell i+ 1 is

being filled by the outputs of cell i. cell i+ 1 can work on the butterfly operations in the

(i+ 1) t stage of another FFT problem. Note that every cell accesses its memory in a

shuffled order. As the same shuffling is performed for all the stages, the interface unit can

send the same address stream to all the cells. In practical applications, there are often a large

number of FFTs to be processed, or there are FFT problems being continuously generated.

Thus it is possible that a new FFT problem can enter the first cell, as soon as the cell

becomes free. In this way all the cells of the systolic array can be kept busy all the time.

4.1.2. Relaxation Example

In some image processing algorithms, the input image is subject to multiple passes of the

same operation (19, 201. This process is called relaxation, in which pass i+ 1 uses the results

of pass i. A natural way to implement relaxation on a 1-D processor array is to have cell i

perform pass i and send results to cell i+ 1.

In a similar way we can implement many other iterative methods such as successive over

A-8

relaxation (SOlt), Jacobi and Catss-Scidel methods for the solution of' linear systems of
equations. Ihcse methods haxe all been implCmented on dc current \Varp system using the
pipeline model.

4.2. Local Computation Model for 1-I) Arrays

In the local computation model, each output is computed entirely within a cell. That is, the
entire computation for each output is done locally at a cell. The input required by the
computation of a cell is shifted in via the cells to the left. The output produced by a cell is
shifted out via the cells to the right. The local computation model is depicted by Figure 6, in
which dotted arrows denote the shift-in and shift-out paths for input and output, respec-

tively.

INPU .. fI~l.)~ ~ .- OUTPUT

Figure 6. Local compulalion model

Various partitioning schemes can be used to assign computations to cells for the local com-
putation model. Most of the schemes are based on the partitioning of the input or output
set [16].

4.2.1. 2-D Convolution Example

One may implement the 2-D convolution on a 1-D array by distributing the input image
evenly to all the cells prior to computation, and then during the computation having cells
work independently from each other using only-data local to the cells. There are many other
examples based on this local computation model using only local inputs during the computa-
tion. They include the discrete cosine transform [31 and the labelled histogram computation

[161.

4.2.2. Matrix Multiplication Example

Given matrices A and B, their product A. B can be computed using the local computation
model. Prior to the computation columns of B are distributed evenly among the cells;
during the computation rows of A are passed to all the cells, and columns of the product A. B
are computed locally at cells [13]. This differs from the above 2-D convolution example
where no input is shifted into a cell during the computation.

4.2.3. Dynamic Programming Example

A dynamic programming algorithm has been implemented on Warp to find the shortest
paths for terrain images. In this program, cell i computes row i of the output image.

A-9

I-Io CVCwr. uni ke Cthe prcccdin. 2-1) and matrix muILtiplictmon examples. celI i uses rcsults of

-cil t- 1. [his iniplics dia cell i cannot stalL k CoMtlpu 0tiotl j't toW unIti cel i- 1 haS at

1cast rinislicd softe ot thC computation tor roy i-1. In tict. during tlc computation cell i lags

behind cell i-/ by two positions. [hat is. while cell i computes position j of row i. cell i-I

will be computing position j+ 2 of row i- 1.

Other examples of pipeline with low intercell latency include 1-D convolution and poly-

nomial evaluation at many points.

4.2.4. The Hough Transform Example

The -lough transform is a template matching algorithm originally invented to find lines in

cloud chamber photographs [10] and later gcneralized to find arbitrary parameterized

curves 141. The algorithm works by mapping each significant pixel of an image into a set of

locations in a table representing different locations in the parameter space. The mapping

takes each pixel in the image into all possible combinations of parameters generating curves

that pass through the image pixel.

For example, in line-finding, lines are parameterized by two values, 8 and p. The line

described by a particular pair of values of these parameters is

x cos 8 + ., sin 0 = p.
Thus. for line finding, the Hough transform takes the (x.y') location of each significant pixel

and, over a range of 8 values, calculates the p value for this (x.) using the formula above. It

then increments a table at location (0, p). Once the entire data set has been processed, the

table is scanned and peaks are found. These peaks represent the most likely lines in the

image.

The time-consuming step in this algorithm is the mapping between the image and the

parameter space. This can involve floating-point computation and must be done once for

each significant pixel in the image, which can be a good porion of the image. Also, the

parameter space searched can be quite large, depending on its dimensionality and the

granularity of the parameter search.

The Warp implementation of the Hough transform works by dividing the parameter

space into different segments to a cell's memory, then allocating each segment to one Warp

cell. The host preprocesses the image by selecting significant pixels and sending their loca-

tions to Warp (alternatively, these pixel locations can be generated in a pass of the image

through Warp). The location of each significant pixel is sent to every cell systolically. At

each cell, the segment of the Hough space that belongs to the cell is indexed by some set of
parameters p2,p2 p. The pixel location is fed into a formula with some particular value

A-10

of the first 11- 1 param.-etrs uid the ath p,rameter is gencratcd. l dble look up t)r unary

LW CtL101 ,S Such is sile or CoSineW cin he uscd to 'sillplif\ con\Colipittioni or the /,I paraumcter.
l-he 1 le Clement att this locc,io1l i tLhCn incinentcd. This process is repe.tCd until the

computition for the entire segment belonging to the cell is completed. and then the pixel

location is sent on to die next cell. Thus in the steady sttc, all the Warp cells carry out

computations simultancouslV for different segments. After all the significant pixels have
been sent through thc Warp cell. each cell selects its significant peaks and sends thern to the
host Ahere the maxima of all the peaks can be found.

Thus for this implementation each cell works on a subset of the output. that is. the
parameter space. The entire input set. that is. die set of significant pixels, is passed to every

cell during the computation. This is an example of the use of the local computation model

based on the output partitioning scheme.

4.3. Recursive Computationi Model for I-D Arrays

All the models described so far involve data flowing in one direction, that is. from left to

right. However, bi-directional data flows are often used for computations where previously
computed results are needed to compute future results. By flowing results that were
previously computed against the flow of intermediate results that are currently, being com-

puted, recursive computations can he implemented. The important feature of the recursive

computation model is the presence of these bi-directional data flows over the I-D array, as
illustrated by Figure 7.

INPUT - OUTPUT

Figure 7. Recursive computation model

Examples of recursive computations that have been implemented on 1-D arrays with bi-
directional data flows include recursive filtering [121, solution of triangular linear

systems [141, and QR-decomposition [91.

4.4. Domain Decomposition Model for I-D Arrays

The domain decomposition model arises when a problem domain (such as the grid space
used in a finite difference or finite element modelling) is decomposed so that each cell
handles a subdomain. This model is like the local computation model where each output is

computed entirely by a single cell. However, once in a while hi-directional exchanges of
information between neighboring cells are needed. The exchanges of information are rela-

tively infrequent: they occur only after cells have done a fairly large amount of computations

A-11

locally. lhe intOrmation exchanged between L.o neighboring cells involkes intcnnediate

results Computed b\ both cells. Figure S depicts the domain decompositioLn model. In

contrast, for tie recursle Comptaltion imodel of Figure 7, bi-dirccuon exchanges of infor-
mation are rclatively frequent. and each right-to-left arrow carries pre\iouisly computed

results by the array rather than intermediate results computed by the sending cell.

Figure 8. Domain decomposition model

There are many computations that can be conveniently carried out using the domain
decomposition model. Numerical simulations of properties of a physical ohject, by either
PDE or Monte Carlo, can be partitioned along the physical space. A large file can be sorted
on a 1-D array by using the bi-directional communication to merge sublists sorted by in-
dividual cells. The merging can be done in a manner similar to that used in the odd-even
transposition sort, involving only nearest neighbor communications [5]. Labelling of con-
nected components in an image can be done by using the bi-directional communication to
merge labels of subimages computed by individual cells [16].

4.5. Divide-and-conquer Model for I-D Arrays

(b)

Figure 9. Divide-and-conquer model: (a) communications between cells that are
I-apart. and(b) communications between cells that are 2-apart

Divide-and-conquer is a fundamental technique in algorithm design [1]. Under this design
paradigm, we solve a problem by (1) partitioning it into subproblems of nearly equal size, (2)
solving all the subproblems, and (3) merging the solutions to the subproblems: this proce-
dure is applied recursively to all the subproblems. Figure 9 illustrates the divide-and-
conquer model. Each subproblem is carried out by one cell or a set of consecutive cells.
When a (sub)problem is partitioned into subproblems or solutions to subproblems are
merged, communications between cells that are either 1-apart, 2-apart, 4-apart, ... , or
N/2-part take place. The 1-apart and 2-apart communications are depicted by solid arrows

A- 12

in ie fiure. .\ characteristic of' the divide-and-conquer model is die presence of these

dii'Crent comInunicaLionS. This distinguishes tie model !rom tihe hoc com!putation and

Jonain dectmposition models.

The divide-and-conquer model t"r example can be used in sorting, and various geometric

problems such as computing convex hulls [171.

4.6. Query Processing Model for I-D Arrays

A 1-D array can be used to process queries. One way to do this is to have the database

partitioned evenly among the cells. Then queries are passed to all the cells. Every cell looks

at the arriving query and outputs its reply to the query. This is illustrated by Figure 10.

QUERY ... ' > : ..
- ,RE PLY

Figure 10. Query processing model

Consider for example the problem of looking for a table in an image. The particular

table we are searching for is defined as having a rectangular top, which will appear as a

parallelogram -in the image. Initially. we do not know anything about the position of the

tabie, except an upper bound on the size of its bounding square in the image. After extract-

ing features such as lines and edges from the image, we partition it into regions whoses sizes

are at icast that of the bounding square for the table. We assign each region to a cell. To

balance the computational load between the cells, we define the regions so that there are
about the same number of features associated with each region. Regions assigned to the cells

are properly overlapped to ensure that the entire table is contained in at least one region. All

the cells can work in parallel on their own regions to respond to the query:

"list all sets of four lines that form a parallelogram".

Given the response to this query, the host can predict the position of other sides of the table,

and produce queries such as:

"list parallel lines with a given orientation",

to find the other sides of the table.

The query processing model requires that the cells operate asynchronously, as when

responding a query they may have to perform different amounts of computations and may

produce variable amounts of outputs.

A- 13

.1.7. M1ulti-lunction Pipelinc Model for 1-I) Arrays

\ in2l compu rthion rni\' involve a series of snhcomput.nins cx.Ch executing a dii jPrent

tunction. FiHurc I Illustrates various fInctions involvcd in the control of an AIN road

following algorithm [15].

RXCofntihne Edge
G oi Wa Ipng preserving
/ comonnentsi filter

cosponent detect Histogram

n~ose ate
rGad center of Host
edhle roa

Figure /1. ulti-function pipeline in an AL V roadjbllowing algorithm

If the different function stages can be chained together on the 1-D array, then a one-pass

execution of the entire computation would be possible. This is the basic idea of the multi-

function pipeline model [7]. In this model, the 1-D array is a pipeline of several groups, each

consisting of a number of cells devoted to a different function. The number of cells in each

group can be adjusted so that every group will take about the same time, in order to max-

imize the pipeline throughput.

Figure 12 illustrates the use of the muli-function pipeline model to implement the

geometry system portion of 3-D computer graphics. The first cell performs the matrix
multiplications, the next three cells do clipping, and the last cell does the scaling operation.

Three cells are devoted to clipping as it requires more arithmetic operations than either

matrix multiplication or scaling [11.

INPUT .> OUTPUT

GROUP I GROUP Z GROUP 3
(FOR MATRIX MULT) (FOR CLIPPING) (FOR SCALING)

Figure 12. Multi-function pipeline model to implement a geometry system

The data rate and format of the input to a group may not be compatible to those of the

output from the preceding group. In this case a buffering capability is needed at either end

of a group.

A- 14

In summary. the mu lti-ufnLction niodel differs from the pipeline model described earlier

i tllt cells are nmk allowed to perloral ditfent I'Llunlns. I his 1cCXxbilit. Il th1 usage

offers the opportunIty or ffclecti ely using a large number of'eells in a 1-I) array.

4.8. T sk Queue Model for I-D Arrays

For all of ie preceding models, cells work together for a common task. whether they are

tightly coupled (as in the pipeline model) or loosely coupled (as in the domain decom-

position model). In contrast- the task queue model allows different cells to work on different

tasks. More precisely, a free cell can be dynamically assigned to execute any task in a task

queue maintained by the host, as depicted by Figure 13. Cells operate in a totally inde-

pendent and asynchronous manner. This would allow a 1-D array to operate like an MIMD

machine and support multiple users. Since the I/O for all the cells must go through the two

boundary cells, to make efficient use of this model there must be many tasks each of which

will do a large amount of computations per I/O operation.

- TASK QUEUE

TASK i+3

TASK 1+2

TASK 1*1

-v.,"o °I OUTPUT

Figure 13. Task queue model

A- 15

5. CONII'L I'.IONAL. ,101)FI.S [FOR 2-1) .AIRANS

Ihis section considers 2-dincisinail (D2-1)) processor arras, as illustrited y) Figure 14.

Figure /4. Examples of2-D processor arrays

We ha~e identified the following important computational models for 2-D arrays:

1. pipeline:

2. local computation:

3. recursive computation:

4. domain decomposition: and

5. dividc-and-conquer.

These nadels are straightforward extensions of the corresponding ones for 1-D arrays, and

thus we will discuss them only briefly.

It is possible to define query processing. multi-function pipeline and task queue models

for 2-D arrays. However. they do not seem to lead to more useful applications than their

counterparts for -D arrays.

5.1. Pipeline Model for 2-D Arrays

In the pipeline model, the 2-D array is a "wide" pipeline where each stage may consist of

more than one cell. During the computation, cells in one stage send intermediate results,
that they have computed. to their nearest neighboring cells in the next stage. Examples are
2-D systolic arrays for matrix multiplication [14, 221 and dynamic programming [8].

5.2. Local Computation Model for 2-D Arrays

The characteristic of the local computation model is that the computation for each output is

computed entirely within a cell. An example is the matrix multiplication scheme where

terms in the product matrix are accumulated locally at individual cells.

A- 16

5.3. lhccursis (oipuation N lodel for 2-1) Arrays

In the rccisi \ c coinpn tation irn del, p rc iousl comnputed result-, iic 1ed hick into die array
to In tciact \kith othr intermnediate re~uiis. An e\aniple Is the IA L' dconipositw~n of banded
maturices 141. Mhcre previouISly :omlpuIted IresuIt[S flowv back to che irra in m o directions to
mcct intermediate results that tlow\\ in yet another direction.

5.4 IDoinain D~ecomiposition M~odel for 2-) Arrays

Physical problems can often be decomnposed naturally ovcr a 2-1) proces-sor array. Fach cell

pci forms computations associated with the assigned region. When one stage of the local
Computation is completed, the cell communicates with its nearest neighbors to update the
values on the boundary of the region.

5.5. Divide-and-conquer Model for 2-D Arrays

Both the bitonic sort and merge sort are recursive sorting methods that can be implemented

on a 2-D array [21].

A- 17

6. c ir: IO A E1 Il)l FOR Hl- K;'I'oGl-NI:OLS MACHIINES

1Ficure 15 indicacs arimis taisks imo lved in an A IN ro.:d Collowing application. [asks such

ais roald pr dictor and tiinder arc to l-sild(0spuL1-purpo, e machines employing. say, I-D
or 2-D processor arrays. The comiputational models. described earlier in this paper. are

LISCU for dc~ising cornpuutional schcrncs for thcse indiudual tasks. Hfowever, to get the
next, level of performance we nccd to explore the fact that mnany of the tasks such as

landmark recognition and mad finding canl operate in parallel. possibly onl a variety of

machines. In this section we discuss this task-level computational model for heterogeneous

machines.

Map database\ Destination from
mission Control

N Navigator'

-Road selection Landmark list
Map database

Road .L3ndrnark

predictor predictor Ve h iclIe
position

Vehicle
Road position Landmarks

Road Landmark
finder recognizer

RecogizedLandmarks

Recogized ro

O Ostacles conttiol

Obstacless

Figure16 deicts he cofguraion o a heeroge eou system iheso emcnisso

arraywhen t be ons aiLae

to pogra theidividua procsss, bute weora need neA couatiolodesomaeh

heterogeneous processors in the system work together in parallel at the task level. In the

A-18

" Warp Ar ray

Workstationn

VLSI Warp ArraySensors I111

~General -purpose

(Vso.Sonar, Radar)

Processor
Output devices ,

Figure 16. Configuration of a heterogeneous machine

following we describe a task-level model for exploiting the task level parallelism.

An application program is viewed as a collection of coarse-grain. asynchronous, cooperat-
ing tasks, as depicted by Figure 17.

From camera

Taskl at host

Task3 Task4
at Warp array at Warp array

Task6 Task6
at Warp array at Warp array

Task2 at host

To display

Figure 17. Program illustration using the task- level model

A task usuall, depends on other tasks to provide its input data. and produces output for

A- 19

consumption by yet other tasks. Input and output data queues can be used between tasks to

smooth die data flow. Fach task executes on a single special- or general-purpose processor,

specified by ihc programmer. In gcneral. a nUmnbcr of tasks within a program may execut,

concurrently on different processors, subject to data-dependency constraints.

The programmer can specify an input condition to trigger the execution of a task as soon

as the condition is satisfied. A condition may be the minimum amount of data needed in an

input queue, or the existence of certain kind of data in the queue. For instance, a landmark

recognition task can start as soon as some distinguished sign appears in the image.

The programmer explicitly associates each task with a set of processors, any of which is

capable of its execution. It will be up to a run-time scheduler to determine the particular

processor on which the execution of the task is to be scheduled.

A- 20

7. CONCLUSIONS

Computational models for -D and 2-I) processor arrays are useful for front-end processing

that deals with data directly from the sensors. Fhe task-levcl model is suited to back-end

processing that deals with reasoning. The ultimate signal processing supercomputer should

be able to utilize the task-levcl parallelism provided by the task-level model, and the fine-

grain parallelism provided by the computational models for I-D and 2-D arrays.

A-21'

References

[1] Aho. A., Hopcroft, J.E. and Ullman, J.D.
The Design and Ainalysis of Compuier Algorithms.
Addison-Wesley, Reading, Massachusetts, 1975.

[21 Annaratone, M., Amould, E., Gross, T., Kung, H.T., Lam, M., Mcnzilcioglu, 0.,
Sarocky. K. and Webb, J.A.
Warp Architecture and Implementation.
In Conference Proceedings of the 131h Annual International Symposium on Computer

Architecture, pages 346-356. June, 1986.

[31 Annaratone, M., Arnould, E., Kung, H.T. and Menzilcioglu, 0.
Using Warp as a Supercomputer in Signal Processing.
In Proceedings of ICASSP 86. IEEE, 1986.

[41 Ballard, D. H. and Brown, D.M.
Computer Vision.
Prentice-Hall, 1982.
pp. 123-31.

[5] Baudet, 0. and Stevenson, D.
Optimal Sorting Algorithms for Parallel Computers.
IEEE Transactions on Computers C-27(1):84-87, January, 1978.

[1 Gross, T. and Lam, M. -
Compilation for a High-performance Systolic Array.
In Proceedings of the SIGPLAN 86 Symposium on Compiler Construction, pages

27-38. ACM SIGPlAN, June, 1986.

[7] Gross, T., Kung, H.T., Lam, M. and Webb, J.
Warp as a Machine for Low-level Vision.
In Proceedings of 1985 IEEE International Conference on Robotics and Automation,

pages 790-800. March, 1985.

[81 Guibas, L.J., Kung, H.T. and Thompson, C.D.
Direct VLSI Implementation of Combinatorial Algorithms.
In Proceedings of Conference on Very Large Scale Integration: Architectum Design,

Fabrication, pages 509-525. California Institute of Technology, January, 1979.

[9] Heller, D.E. and Ipsen, I.C.F.
Systolic Networks for Orthogonal Equivalence Transformations and Their Applica-

tions.
In Proceedings of Conference on Advanced Research in VLSI, pages 113-122. Massa-

chusetts Institute of Technology, Cambridge, Massachusetts, January, 1982.

[101 Hough, P. V. C.
Method and Means for Recognizing Complex Patterns.
United States Patent Number 3,069,654, December, 1962.

A-22

[111 Hsu, F.H., Kung, H.T., Nishizawa, T. ,id Sussman, A.
LINeC: The link and Itcrcnecti'n (hip.
Technical Report. Carnegie-Mellon University. Computcr Scicncc Dcpartment, May.

1984.

[12] Kung, H.T.
Let's Design Algorithms for VI.SI Systems.
In Proceedings of Conference on Very Large Scale Integration: Architecture. Design.

rabricaion, pages 65-90. California Institute of Technology, January, 1979.
Also available as a CMU Computer Science Dcparunent technical report. September

1979.

[131 Kung, H.T.
Systolic Algorithms for the CMU Warp Processor.
In Proceedings of the Seventh International Conference on Pattern Recognition, pages

570-577. International Association for Pattern Recognition, 1984.

[141 Kung, H.T. and Leiserson, C.E.
Systolic Arrays (for VLSI).
In Duff, I. S. and Stewart. G. W. (editors), Sparse Matrix Proceedings 1978, pages

256-282. Society for Industrial and Applied Mathematics, 1979.

[151 Kung, H.T. and Webb, J.A.
Global Operations on the CMU Warp Machine.
In Proceedings of 1985 AIAA Computers in Aerospace V Conference, pages 209-219.

American Institute of Aeronautics and Astronautics, October, 1985.

[16] Kung, H. T. and Webb, J. A.
Mapping Image Processing Operations onto a Linear Systolic Machine.
Distributed Computing 1, 1986.

[17] Preparata. F.P. and Shamos, M.I.
Computational Geometry: In Introduction.
Springer-Verlag, New York, 1985.

[181 Rabiner, L.R. and Gold, B.
Theory and Application of Digital Signal Processing.
Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

[19] Rosenfeld, A.
Iterative methods in image analysis.
In Proceedings of the IEEE Computer Society Conference on Pattern Recognition and

Image Processing, pages 14-18. International Association for Pattern Recognition,
1977.

[201 Rosenfeld, A., Hummel, R. A., and Zucker, S. W.
Scene labelling by relaxation operations.
IEEE Trans on Systems Man, and Cybernetics SMC-6:420-433, June, 1976.

A-2

[211 lliompson, C.). and Kung, i.T.
Sorting on a Niesh-Cinnccted Parallel Computer.
Communications oJ/tie .10(.11 20(4):263-271. April, 1977.

[22] Weiser, U. and Davis, A.
A Wavefront Notation Tool for VLSI Array Design.
In Kung, H.T., Sprouii, R.F., ,id Stecle, G.L., Jr. (editors). VLSI Systems and

Computations, pages 226-234. Computer Science Department, Carnegie-Mellon
University, Computer Science Press. Inc., October, 1981.

[231 Woo, 13.. Lin. L. and Ware. F.
A High-Speed 32 Bit IEEE Floating-Point Chip Set for Digital Signal Processing.
In Proceedings of 1984 IEEE International Conference on Acouslics, Speech and Sig-

nal Processing. pages 16.6.1-16.6.4. 1984.

A-24

Of
RomneAir Developm77enlt Center

RAVC ptanz and executes 'Leea'ich, devetopment, test and
~seter-ted acquizition pi-otams i~an 4ucpport o6 Command,

* CotoZ, Comni-cations and InteWience (C3 1) activities.
TechnicaZ and engnetiZng sppaitt wtah.in aAeaA 6 .~
competence is pitavided to. ESV PR'wytam O6ire6 (Pc2&) and
otheA ESV etementA to pet~awi e64ective ac.quiLiLtion o6
C3 .6ytema. 7he ateas o6 technicat competence inceude

* comnitcations~, command and contxtP batte managemen~t
indoition pitac.,ing, zwwetiUance sensoft, itetegence
data cottection and handL~ng, 6otid ~state scencn,
e ctAomanv-tc.-, and piaopagat~on, and ctr~onic
iteUibtmabLtnabitity and campatiL&ZLtq.

